



#### **Recall: Health Information Systems**

#### Operational <-> Tactical <-> Strategic Health Information Systems







#### Health Informatics

## **Integrated Healthcare**

#### What to integrate in healthcare?



#### Health Informatics in Healthcare



Excellence in Health Info

#### Health Information Systems' Collaboration

- The implementation of HIS within healthcare must meet both national and local performance goals.
- Improved outcomes comes from <u>Knowledge exchange</u>,
  - which comes from collaboration when sharing a common understanding
  - learning from past experiences to make better decisions in the future.





# Health Information Systems' Collaboration: within an organisation

- Effective collaboration requires sharing of knowledge and exchange of information.
- To succeed, it requires a multidisciplinary approach, with systems that can work in:
  - a complex healthcare organizations environment
  - diverse and complex patient populations.



http://hitinfrastructure.com/news/clinical-communication-collaborationkey-for-hit-systems © HiCure 2015-2018

#### Health Information Systems

- HISs refer to any system that helps to
  - Capturing, storing, managing, analyzing or transmitting information related to the health of individuals
  - Administering and managing the activities of organizations that work within the health sector (financial, personnel, payroll, bed census etc.)
  - Evaluating Hospital Performance and Cost, and projection of the long-term forecast





#### EMR vs EHR vs PHR!

- Electronic Medical Record:
  - An electronic record of health-related information on an individual
  - created, gathered, managed, and consulted by authorised clinicians and staff
  - serves one healthcare organisation.
- Electronic Health Record:
  - An electronic record of health-related information on an individual
  - conforms to nationally recognised interoperability standards
  - Supports the functions of other Health information systems
  - created, managed, and consulted by authorised clinicians and staff
  - Serves/across more than one healthcare organisation.
- Personal Health Record:
  - An electronic record of health-related information on an **individual**
  - can be drawn from multiple sources while being managed, shared, and controlled by the individual.
  - conforms to nationally recognised interoperability standards



#### Electronic Health Records Concept

Electronic Health Records (EHR) systems:

- at the **centre** of health information systems.
- Key to implement management and operational systems.
- Aims to improve quality of clinical data, which strongly depends on the level of integration and normalisation of an EHR:
  - Integration: refers to the level of system and data integration between HISs in an organisation for their ability to communicate or exchange data, to form a common EHR.
  - Normalisation: refers to using or defining common standards, in HISs, to communicate on both structure and meaning, possibly, across organisations.



#### **Open Source EHR System Example: VistA**





#### Integrated Healthcare: Disconnected data!

#### Current system fragments patient information and creates **redundant**, **inefficient** efforts



#### Future system will consolidate information and provide a foundation for **unifying** efforts



Excellence in Health Informatics Integrated Curric

#### HIS in a Hospital: Data



© HiCure 2015-2018

Excellence in Health Infr

#### **Electronic Health Records Land escape**



© HiCure 2015-2018

Source: Eurorec



#### **EHR System objectives**

The EHR should enable the <u>consistent</u> capture, processing, retention, protection and communication of health information such that <u>interoperability</u> is achieved in support of <u>shared care</u>, <u>improved quality of care</u>, <u>effective resource management</u>, providing evidence of actions taken in health(care), and in support of the uses of <u>anonymized</u> information for health system management.

[ISO 18308]



#### EHR System objectives...

"The EHR should enable authorized users to <u>access</u> <u>health information</u> that is relevant, intact, appropriate to their permissions and within a timeframe that is appropriate to the context".

#### [ISO 18308]



#### EHR System objectives...

The EHR should enable the communication (or exchange) of all health information between care settings, subject to appropriate consent and access rights, to a sufficient quality to support safe shared clinical care.

#### [ISO 18308]



#### Why share Medical Data?

- Increases patient safety
- Lowers Healthcare costs
- Allows for coordination of care
- Increases communication between providers

=> Similar to a Banking analogy of providing banking services in multiple branches



#### HIS: Integrated health





## Front End Viewer ELECTRONIC MEDICAL RECORD



S T A N D A R D S

#### Health Informatics

## Levels of integration

#### How to define "integrated healthcare"?



### Shareable EHR with HISs

- Sharing of HISs information must be at multiple levels:
  - At institution level
    - A healthcare institution must be able to share patients' information generated by *its HISs*
  - At national level
    - A healthcare institution must be able to share patients' information generated by other *national healthcare institutions* (i.e., Hospitals, Medical Lab centers, Doctors' clinics)
  - At international level
    - A healthcare institution must be able to share patients' information generated by other *international healthcare institutions*



### Shareable EHR with HISs

- Not all healthcare institutions (i.e., doctors' clinics, healthcare and radiology centres, medical labs, hospitals, etc.) adopt sharable EHR
- The "meaningful use" of EHR requires healthcare institutions to share information that is generated and managed by HISs



#### Models of Integrated Healthcare (or EHR Adoption)

- Model-1: Waegeman's Model of EHR development
  - Defined first in 1996
  - Redefined in 2002
- Model-2: The Healthcare Information and Management Systems Society (HiMSS) Model of EHR Adoption



## Five Levels of Electronic Health Records: Waegeman's Levels 1996

 Level 5: Electronic Health Record (comprehensive)

Level 4: Electronic Patient Record (spans across organizations)

Level 3: Electronic Medical Record (organization level)

Level 2: Computerized Medical Record (e.g documents scanning)

 Level 1: Automated Medical Record (e.g. clinical information systems)



(Waegemann, 1996)

# Five Levels of EHRs: Waegeman's Levels refined in 2002

|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | EPR-EHCR                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              | EHR                                                                                                     |
| Electronic Patient Data                                                                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               | EPR                                                                                                                                                                          | Contains all possible<br>health relevant data<br>of a person, includes<br>e.g. wellness, food-          |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | EMR<br>Digital medical<br>record incl. data<br>management.                                                                                                                                                                                                                                    | relevant data of a<br>patient, can be<br>established beyond<br>an institution<br>(regional), exceed                                                                          | health related<br>information, always<br>established beyond<br>an institutional<br>framework (regional, |
| AMR<br>50% of information<br>is IT<br>generated,paper-<br>based medical<br>record, some<br>automation in<br>medical documen-<br>tation (Order/Entry,<br>Result Reporting,<br>Communication,<br>Digital Recording) | CMR<br>Digitalisation of<br>medical record by<br>scanning the paper<br>documents and<br>importing digital<br>files, structure and<br>view like paper<br>record, paper-less<br>system, no use of<br>OCR and ICR but<br>pure image system | different views on<br>record enables,<br>digital medical<br>record embedded in<br>IT based<br>organisation support<br>of clinical processes,<br>documents solely IT<br>generated, decision<br>support and<br>interactive<br>guidelines,<br>connection with<br>business and<br>management data | the framework of<br>documentation duty<br>within a medical<br>record, longitudinal<br>projection, e.g.<br>telemedicine,<br>information systems<br>research data<br>networks. | national, global),<br>web-based, includes<br>participation of<br>citizen in creating<br>the record      |
| Level 1                                                                                                                                                                                                           | Level 2                                                                                                                                                                                                                                 | Level 3                                                                                                                                                                                                                                                                                       | Level 4                                                                                                                                                                      | Level 5                                                                                                 |
|                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                       | Source: adapted from                                                                                                                                                                                                                                                                          | m Waegemann (2002                                                                                                                                                            | ) and Blobel B (2003) <sup>3</sup>                                                                      |

Excellence in Health Informatics I

### Shareable EHR with HISs

- The Healthcare Information and Management Systems Society (HiMSS) identify an EHR adoption model
  - It consists of eight level stages (0 7) that measures the adoption and utilisation of shared EHR Functions
  - It aims to promote and support healthcare institutions to adopt EHR and integrate it with their HISs



#### • Level (0)

- The organization has not installed all of the three key ancillary clinical information systems
  - Laboratory IS
  - Pharmacy IS
  - Radiology IS
- <u>Paper-based records</u> are the only means of storing and accessing clinical information



- Level (1)
  - The organization has installed all of the three key ancillary clinical information systems
    - Laboratory IS
    - Pharmacy IS
    - Radiology IS
  - Electronic storage of healthcare notes
     normally as free text are stored in a patient record



- Level (2)
  - Major ancillary clinical systems feed data to a clinical data repository (CDR)
    - The CDR provides physician <u>access</u> for reviewing all orders and results.
    - The CDR contains a <u>controlled medical</u> <u>vocabulary</u>, and the clinical decision support/rules engine (CDS) for rudimentary conflict checking.
    - Information from document <u>imaging</u> systems may be linked to the CDR at this stage.
  - The hospital may have health information exchange (HIE) capability at this stage and can share (part of) information it has in the CDR with other healthcare providers.



- Level (3)
  - Nursing/clinical documentation (e.g. vital signs, flow sheets, nursing notes, etc.) is required, implemented and integrated with the CDR
    - Care plan charting is scored with extra points
  - The electronic Patient Registration System (PRS) or Patient Master Index system is implemented.
  - Medical image access from Radiology information system (RIS) is available for access by physicians <u>outside</u> the Radiology department via the organisation's intranet.



- Level (4)
  - Computerised Practitioner Order Entry (CPOE) for use by any clinician licensed to create orders is added to the nursing, laboratory, radiology, and CDR environment
  - The *level two of clinical decision support* (*DSS*) capabilities related to evidence-based medicine protocols.
  - This stage is considered achieved if one inpatient service area has implemented CPOE with physicians entering orders and completed the previous levels (i.e., 1, 2, and 3)



- Level (5)
  - A full complement of RIS systems provides medical images to physicians via an intranet and communicates all film based images to different departments
  - Cardiology RIS and document imaging are scored with extra points.



- Level (6)
  - Full physician documentation with structured templates and discrete data is implemented for: *progress notes, consult notes, discharge summaries or problem list* & diagnosis list maintenance.
  - Level three of *clinical decision support* provides guidance for all clinician activities related to protocols and outcomes in the form of variance & compliance alerts
  - The <u>closed loop</u> of <u>medication</u> <u>administration</u> with bar-coded unit dose medications environment is fully implemented



- Level (6) cont.
  - The PRS and <u>bar-coding</u> or other auto identification technology - such as radio frequency identification (RFID) - are implemented and integrated with CPOE and pharmacy to maximise point of care patient safety processes for medication administration.
  - The "*five rights*" of medication administration are <u>verified</u> at the bedside with scanning of the bar-code on the unit does medication and the patient ID.



#### "five rights" of medication administration

Every registered clinician/nurse is legally responsible for the correct administration of drugs. This includes the five "rights" of administration:

- **Right patient** check the patient name & hospital number against the chart & I.D. band. ask the patient to state his/her name, & their date of birth (D.O.B)
- **Right drug** check the drug three times: before removing it from the trolley or shelf, when the drug is removed from the container, before the container is returned to storage, check the expiry date of the drug
- **Right dose** check the dose, read the container label, calculate the dose
- **Right route** check and only give the medications by the route designated
- **Right time** -check and give the medication at the prescribed time (within 20 minutes of the prescribed time)



- Level (7)
  - The hospital no longer uses <u>paper-based</u> <u>patient</u> record to deliver and manage patient care
  - Also, it has a mixture of discrete data, document images, and medical images within its EMR environment.
  - <u>Data warehousing</u> is being used to analyze patterns of clinical data to improve quality of care, patient safety, and care delivery efficiency.
  - Clinical information can be readily <u>shared</u> with all entities that are authorised to treat the patient, or a health information exchange (i.e., other non-associated hospitals, ambulatory clinics, employers, payers and patients in a data sharing environment)



(PIS) -

osed Loop

- Level (7) cont.
  - The hospital demonstrates summary data continuity (full integrated healthcare) for all hospital services (e.g., inpatient, outpatient, ED, and with any owned or managed ambulatory clinics).
  - Blood products and human milk are included in the closed-loop medication administration process.





Shared EHR http://www.openehr.org - 05/02/2017



#### Health Informatics

## Health care Integration

#### How to integrate healthcare data?



# Why is sharing or exchanging of Clinical Data needed ?

- Patients moves!?
  - When a patient moves to another location, their Patient Record should go with them and be immediately useable.
    - Ability to Transfer EMR between independent sites, to allow new clinicians abilities to append to the record
- Care at multiple sites
  - typical in healthcare, patient uses multiple sites
    - A real (or virtual) summary record with real time remote access to patient records
  - for patient referrals
    - Access to specialised consultancy or special healthcare centres
- For health management purposes at organizational or national levels.



### EHR data interoperability

- To achieve level (7) of shareable EHR adoption model, EHR data must be *interoperable*.
- EHR *data interoperability* refers to the ability of HISs (that create, exchange and consume EHR data) to have clear shared expectations or understanding about:
  - the contents (its structure and data-model)
  - the context (the circumstances of how it was taken), and
  - the meaning of that data.



#### What does Interoperability mean?

- Interoperability
  - Ability of two or more systems or components to exchange information [functional interoperability] and to use the information that has been exchanged [semantic interoperability]

#### [IEEE and HL7]

- Two main types of interoperability:
  - Syntactic interoperability: two systems can interoperate at technical levels, i.e. the two systems can communicate information or knowledge at technical details, including data structure or model.
  - Semantic interoperability: two systems can interoperate at content levels: i.e. the two systems have the same meaning of content (i.e. information) being shared.



### EHR data interoperability

- Sharing can occur at multiple levels
  - Human readable form (e.g. free text)
  - Document level sharing (e.g. a structured document)
  - Messages (e.g. a message about specific medical issue, e.g. a lab test/pathology item)
  - Content
    - Document images
    - Free form data
    - Structured data
- Interoperability, to be efficient, should occur in a machine readable form, where machines can communicate without human intervention.



### EHR data interoperability

- To achieve a machine readable form
  - Health information systems should have a common repository
  - Health information systems should communicate using a common language & terminologies.
- To achieve, a number of *Health standards* (HS) have been developed and used to achieve EHR data interoperability.
- To automate sharing or exchange of data, <u>health Standards</u>
   should be represented in a machine readable form, i.e. in a
   form machines or computers can read, process and act upon/
   make decisions about.



#### How to achieved Integrated Healthcare?

- To <u>achieve</u> Integrated Healthcare, in which HISs seamlessly communication, standards must be developed to address both types of interoperability :
  - Syntactic interoperability: to address, we require standards developed that define an agreeable structure (or representation) of health data,
    - i.e. for health record/data-model, health data exchange/ messaging, system/document architecture
  - Semantic interoperability: to address, we require standards developed that define the meaning of health content:
    - i.e. for health terminology, vocabulary or coding standards.



#### **Clinical Systems: Integration**



### Purpose of Standards

- Maintaining long term, meaningful, comparable, and compatible information on both patient health and care
- Maintaining well defined information structure
  - which allows modular development and expandability of the health information systems
- Achieving flexibility and cost-effective evolution of information systems
  - Both in their design and development and with no information loss
- Can achieve integrated health information environment
- Ensuring security of data and information handling procedures in the systems
- Compatibility of hardware and software applications





### Types of Health Standards

1. Medical terminology/vocabulary or coding standards

- Define standard code-sets for generally used concepts, terms, entity names, disease WILL BE COVERED names, procedures, laboratory tests, observations, clinical findings, body structure, names, etc.
- e.g. ICD9/10, SNOMED-CT etc.
- 2. Electronic Health record or Data-model standards
  - WILL BE COVERED - Define system modules and module structures, the interfaces between modules, and operations/processes
  - openEHR/CEN 13606, etc.

#### 3. Health data exchange or messaging standards

- Provide a comprehensive framework for exchange, integration, sharin, and retrieval of electronic health information WILL BE COVERED-partly
- HL7 v2.x/v3.0,
- ISO/HL7 27931 etc.

### Types of Health Standards

4. Architecture or Model-oriented System standards

- WILL BE COVERED Define elements of a health system architecture to support different health functions
- e.g. CDA: Clinical Document Architecture
- e.g. ISO 12967, ISO 10781, ENV 12443, etc.
- 5. Data formats standards
  - Define data formats for different types of health data for laboratory data, medical images WILL BE COVERED
  - e.g. DICOM etc.
- 6. Workflows and Process-oriented standards
  - describe the semantics of clinical concepts & processes to support continuous care of an individual within an organisation and across organisations
  - CEN 13940 etc.



## Health Standard Organizations

Many **Not-for-profit organisations** are involved in Health Informatics standardization process including:

- American Society for Testing and Materials (ASTM),
- Healthcare Information and Management Systems Society (HIMSS)
- CEN (European Committee for Standardisation) (e.g. CEN/TC215, CEN 13606)
- ISO (International Standard Organisation) (e.g. ISO/TC215)
- Health Level Seven International (HL7)
- ANSI (American National Standards Institute)
- Institute of Electrical and Electronic Engineers (IEEE)
- World Health Organisation (WHO)
- European Patients Smart Open Services (epSOS)
- GS1 Healthcare
- Digital Imaging and Communications in Medicine (DICOM)





#### Clinical Data Terminology/Vocabulary/ Coding Standards

- Controlled Medical Terminology/ Vocabulary:
  - ICD9/ICD10 (International Classification of Diseases, ver. 9/ver. 10)
  - SNOMED -CT (Standardized Nomenclature of Medicine, Clinical Terms)
  - LOINC (Logical Observation, Identifiers, Names and Codes) – Lab results
  - RxNorm (normalized naming system for generic and branded drugs)
  - RCT (Read Codes Terms, ver. 2.x, ver. 3.x) specific to the UK
  - NLM UMLS (Unified Medical Language System): inclusive of all coding systems, and mapping between them

#### Using Controlled Vocabulary



#### Health Vocabulary examples



#### Clinical Data model and exchange Standards

- Data-model and Architectural standards:
  - openEHR/ CEN 13606 (EHR Model standard)
  - CDA (Clinical Document Architecture)
  - CCR (Continuity Care Records)
- Data Exchange standards:
  - HL7 (Health Level 7, v 2.x, v 3.x)





#### Clinical Data format and Privacy Standards

- Data Format standards:
  - DICOM (Digital Imaging and Communications in Medicine)- messages for images
- Privacy and Confidentiality:
  - HIPPA (Health Insurance Portability and Accountability Act)











- Nanette B. Sayles, EdD, RHIA, CHPS, CCS, CPHIMS, FAHIMA. *Health Information Management Technology: An Applied Approach*, 4th Edition, 2013
- <u>https://www.healthit.gov</u>, last accessed 01/02/2017
- <u>https://imscdrmba.wordpress.com/206-unit-iii/</u>
- <u>http://www.himss.org/ehr-adoption</u>, last access 01/05/2017
- Strategic Interoperability in Germany, Spain & the UK: The Clinical and Business Imperative for Healthcare Organizations, HIMSS Media 2014.
- https://healthit.ahrq.gov/key-topics/consumer-health-it-applications
- Coiera, E. (2006) .Communication Systems in Healthcare. *Clinical Biochemical Review*, 27(2), 89–98. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579411/</u>



#### References:

- Hebda, T. & Czar, P. (2013). Handbook of Informatics for Nurses and Healthcare Professionals. (5<sup>th</sup> Ed.). Pearson Prentice Hall, New Jersey, USA.
- Wager, Karen A. (2013). Health care information systems: a practical approach for health care management (2<sup>nd</sup> Ed). Jossey-Bass, San Francisco, CA.
- McGonigle, D. & Mastrian. K. (2015).Nursing Informatics and the Foundation of Knowledge (3<sup>rd</sup> Ed.)
- Australian Health Informatics Education Council. (2013). Health informatics Competences Framework. Retrieved from: <u>http://</u> <u>www.healthinformaticscertification.com/wp-content/uploads/2016/02/</u> <u>CHIA-competencies-Framework\_FINAL.pdf</u>





- Robin Beaumont. (2011). Types of Health Information Systems. Retrieved from: <u>http://www.floppybunny.org/robin/web/virtualclassroom/chap12/s2/</u> <u>systems1.pdf</u>
- Klaus Krickeberg. (2007). Health Information Management Journal, 36(3), 8-20. Retrieved from: <u>http://himaa.org.au/members/journal/</u> <u>HIMJ\_36\_3\_2007/</u> <u>Krickeberg%20Principles%20of%20HIS%20in%20developing%20countries.</u> <u>pdf</u>
- WHO. (2000). Design and implementation of health information systems.
- Amenwerth, E. Graber, S. Herrmann, G. Burkl, T. & Konig, J. (2003). Evaluation of health information systems—problems and challenges. International Journal of Medical Informatics, 71, 125-135.



# Thanks! Any questions?

You can find me at: Email: @ritaj